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LATTICE MODELS OF GROWTH OF ALIGNED 
DIPOLAR FLUIDS 

0. MAAS* and D. M. HEYES 

Department of Chemistry, University of' Surrey, Guildford, GU2 5 X H ,  U.K.  

(Rcceioed 1 J u l y  1Y95) 

The aggregation kinetics of a lattice model o f  aligned dipoles is examined as il simple model for electror- 
heological or magnetorheological fluids. We have found that the mechanism of cluster growth depends on 
time. Initial growth of clusters is dominated by monomer field-induced migration. but subsequent growth 
of the clusters at later stages is strongly dependent on monomer depletion and anisotropic diffusion of the 
aligned clusters. 

We find that the mean size of the chain (s( t ) )  growth with time, t ,  according to ( s ( t ) )  - t' with the 
exponent decreasing with increasing volume fraction, in accordance with recent experiments. This generic 
growth law is rather insensitive to the growth procedure o f  the model. 

KEY WORDS: Electrorheological fluids, lattice model, simulation. 

1 INTRODUCTION 

Electrorheological, ER, and magnetorheological, MR, fluids can be used in various 
technological applications such as damping devices (for example, shock absorbers in 
automobiles) or clutch devices which transmit a torque. These fluids are colloidal 
dispersions of electrically (or magnetically) polarizable particles, with diameter 
ranging between 0.1 and 100 pm, in an insulating oil of low dielectric constant for 
the ER case. After the application of an electric/magnetic field on these fluids, there 
is often observed a dramatic increase in viscosity and the occurrence of a yield stress. 
This change in the rheological properties can take place in milliseconds and is 
reversible on removal of the field. This is known as the electrorheological or mag- 
netorheological effect, which in both cases arises from a clustering of the colloidal 
particles to macroscopic dimensions. There are many technologically desirable char- 
acteristics for ER-fluids. These include low power consumption, rapid on/off charac- 
teristics, a wide working temperatue range ( -  40 -+ + 200°C). Moreover, ER-fluids 
should be stable, nonsettling, noncorrosive and nontoxic. In the case of the ER 
effect, an electric field polarises the particles. Three alternative mechanisms for this 
interfacial polarization have been proposed, (a) carrier migration through the bulk 
of the particle, (b) surface migration of carriers and/or (c) movement of the charges 
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110 0. M A A S  AND D. M. HEYES 

held in a double layer with the counterion in the liquid phase5. This polarization 
leads to the formation of a field aligned dipole moment on the particles, which 
enables aggregation of the particles and an enhancement of the viscosity and 
development of a yield stress. The uncertainty in the precise interaction force 
between the colloidal particles in the ER fluid has made the MR fluids increasingly 
popular for model experimental studies in recent years. 

A basic issue of importance for the development of effective commercial ER and MR 
fluids is the mechanism of growth of the clusters. Ideally they must aggregate as quickly 
as possible on application of a field and also break up again on removal of the field. 
“Responsiveness” and strength of the clusters are therefore important issues in optimis- 
ing a commercial product. In the past simple models for dipolar have been used to 
represent ER fluids. We performed the first off-lattice (i.e., Brownian Dynamics) simula- 
tions of the ER effect’ ‘. In fact, model fluids interacting with dipoles superimposed on 
a repulsive core have proved to be useful models for the ER and MR fluids. These 
model fluids have received much analytic and simulation attention recently especially in 
the wider context of their phase diagrams, e.g.,7-11. One area which has attracted little 
attention concerns the initial stages of growth of the clusters from a random equilibrium 
starting state. It is this aspect of dipolar fluids that we consider here. The objective of 
this study is to gain some insights into the mechanism by which dipole colloidal fluids 
(whether ER or MR) grow to macroscopic dimensions. This ultimately could have 
implications for the “design” of more ‘responsive’ commercial fluids. 

2 SIMULATION DETAILS 

The model discussed here assumes that there are only dipolar interactions between the 
dispersed particles. The interaction energy between two spheres separated by 1: with an 
angle 0 between 1: and the field direction, assumed to be y here, is, V(r, 0) where, 

where E~ is the permittivity of the vacuum, E, the relative permittivity of the fluid 
medium and py is the field induced dipole moment, which is assumed to be propor- 
tional to the magnitude of the field, E .  This interaction energy is anisotropic and 
leads to the aggregation of the polarized particles in fibrillar structures along the 
field direction (i.e., along 0 = 0). The fibrils eventually reach from one electrode to 
the other and thereby inhibit fluid flow, which causes an increase in the viscosity of 
the liquid. These structures have been observed many times for ER and MR systems, 
e.g.,123’3914*6. There are advantages in using a lattice model here, as i t  gives us more 
control over the details of the dynamics of the particles. We can define arbitrary 
growth ‘rules’ and thereby establish the dominating processes taking place at various 
stages in the growth of real ER or MR clusters. We consider a square N x N 2D 
lattice, with fractional occupancy of particles, u being equivalent to the solids volume 
fraction in real liquids. Each occupied site represents one colloidal particle. A reduced 
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LATTICE MODELS OF ALIGNED DIPOLES 111 

dimensionless temperature, T*, is defined from the ratio of thermal and dipolar energies, 

where (T is the diameter of a particle. 
The interaction energy of the system is computed from the 8 nearest neighbour 

interactions on the lattice only, as indicated in Figure 1. Interactions from more 
remote sites are set to zero. Two particles cannot occupy the same site, as this 
represents severely overlapping particles, when the interaction energy for the two is 
+ m. This infinite energy region of prohibited space is represented by the central 
black square in the figure. All energies are quoted in reduced units of p~/4ne,i;,03. 
As can be seen the most favorable relative positions are for two ‘lattice particles’ to 
be situated along the y direction, with a weak attraction along the diagonal and a 
repulsion along the x direction. These values arise from applying Eqn. (1) to par- 
ticles positioned at the centre of the lattice square. The distances are measured from 
the centre of the central square to the centre of the surrounding square. We denote 
this set of interactions to be of the type I1 lattice class. We also show in Figure 1 

(4 

+ 
E Y 

4 
E Y 

Figure I The nearest neighhour interactions used in the Monte Carlo simulations. The interaction 
energy with a central particle represented by a halck square is shown. Non-zero interactions are restricted 
to nearest neighhours. The energies are in units of p ~ / 4 7 ~ i : , ~ 1 : , ( ~ ~ .  Key: (a)  for model I shows a 2D lattice of 
isotropic interactions, and (h) shows model I I  interactions for a lattice of dipoles all pointing in the 
vertical ( y) direction. 
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112 0. MAAS AND D. M. HEYES 

another set of lattice interactions (called type I) in which each surrounding site has 
the same interaction energy, - 1/2, which is the average of that of the eight sites of 
dipole lattice 11. The reason for the interest in this lattice, is we sought to establish and 
distinguish the effects of an anisotropic interaction from those of a symmetrical short 
range attractive interaction, having the same mean interaction energy in both cases. 

We have used a standard Metropolis Monte Carlo scheme to evolve the system 
under the influence of an applied field”. The particles are first randomly placed on 
the lattice. In order to generate more realistic cooperative motion, we attempt to 
move all the particles at each stage in the simulation. As particles ‘jump’ a distance 
of order their diameter, CJ, then phase space is traversed more efficiently than would 
be the case for a Brownian Dynamics continuum space model, in which jumps of - 0.01 CJ are typical. This course-grained resolution is particularly well suited to 
follow the later stages of cluster growth. 

We have adopted two different schemes for moving the particles. In method A we 
give all particles the chance to move at each step in the simulation, as illustrated in 
Figure 2. When the monomers attach to the ends of a chain they are also free to 
detach. This because all particles are treated independently from each other in the MC 
scheme. Therefore clusters once formed can subsequently break up. They are more 
likely to break up by loss of a monomer from the ends than from the loss of a 
monomer from the middle (i.e., by translating in the x-direction) as the former process 
has a lower energy penalty associated with it. Another consequence of this diffusion 
mechanism is that movement of large clusters as whole units is very unlikely. This is 
because such a process would involve the simultaneous displacement of all monomers 
in a cluster in the same direction at the same time, which is increasingly unlikely as 
the clusters grow in size. The dynamics scheme A therefore corresponds to the limit of 
a high viscosity host liquid, in which large cluster diffusion is essentially arrested on 
any useful timescale. The probability of a particle moving is given by the product of a 
spatial factor (diagonal movements are 2-’’2 less likely than along the x or y direc- 
tions) and the usual Metropolis energy criterion. 

In model B, which is also illustrated in Figure 2, the i-mers can move freely as 
whole units. Once formed the clusters are not allowed to break up. Instead they are 
treated as a single ‘monomer’ for the purpose of determining the particle trajectories. 
This is a valid approximation at low temperature, but an extreme limit of the real 
(i.e., experimental) behaviour at high temperature. For cluster diffusion we assume 
that the ‘diffusion coefficients’ (i.e., jump probabilities) in the x and y directions are 
inversely proportional to the area the cluster presents to the liquid in the y and x 
directions, respectively. The diffusion coefficient is equal to that of the monomers, 
Do, in the y direction. This is because in this direction the clusters only present the 
area of a single monomer to the solvent. In contrast, in the x-direction diffusion is 
inversely proportional to the length of the cluster in the y direction, which leads to 
D = D , i - ’ ,  where i is the number of monomers in the cluster along the y axis. 
(Clusters are deemed to be linear lines of monomers in the y direction, and any 
‘branches’ in the x-direction are ignored.) This modification is meant to introduce 
some aspects of the diffusional behaviour of the real ER or MR fluids, in which 
resistance to cluster diffusion will be greatest perpendicular to the axis of the chain. 
In diffusional model B the clusters are not allowed to disintegrate, so aggregation is 
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LATTICE MODELS OF ALIGNED DIPOLES 113 

Migration mechanism A 

R 
t 

Migration mechanism B 

i+ t 

D= 
i 

Figure2 A diagram illustrating the two rules adopted for particle migration. No two particles can 
occupy the same site. In model A, shown in (a), the isolated particles or 'monomers' are allowed to diffuse 
irrespective of their status in or out of a cluster. In model R,  shown in  (b), vertical clusters formed out of 
I monomers can diffuse, anisotropically only as a single unit. Clusters, once formed cannot break up. 

irreversible. This approximation is often applied in computer studies of aggrega- 
tion, and has been used before for another lattice model of particles with an 
anisotropic potential'". I t  would also be realistic for the clusters to be in dynamic 
equilibrium with the pool of monomers and other clusters. However, the model 
would then have been prohibitively expensive to implement and also the results 
been obscured by the presence of several competing processes present in the same 
model. Rather our intention has been in this pilot study to explore systematically 
cluster growth and diffusion of limiting models for aligned dipole fluids. Models A 
and B are extremes of behaviour to which real ER or MR liquids will conform to 
under certain experimental conditions. Model A is most realistic at  low fields (or 
equivalently high temperatures) and high volume fractions (where large cluster 
diffusion is perhaps not so important). Model B is most appropriate at high fields 
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114 0. MAAS AND D. M. HEYES 

or low temperature (i.e., in which there is low cluster break up probability) and 
low volume fraction. The two parameters we explored in our calculations were 
volume fraction and reduced temperature (which is proportional to E-’, where E 
is the field). 

3 RESULTS AND DISCUSSION 

Instantaneous 2D pictures of the particle positions are informative and we therefore 
show some representative examples for models IIA and IIB computed on a 20 x 20 
lattice in Figure 3. Periodic boundary conditions are applied to the systems, so that 
a particle leaving the cell enters through the opposite face15. The system is essential- 
ly infinite but with a periodicity length (scale) of 20 lattice units. At high tempera- 
ture, e.g., T* = 10 the IIA systems are highly disordered. This is because the 
attractive interactions are weak compared with thermal energy, and therefore there 
is a dynamic equilibrium between the clusters, involving accretion and decomposi- 
tion. As temperature decreases, there is a greater driving force for monomers to attach 
to the ends of existing clusters and consequently the clusters grow in length. Neverthe- 
less, even at the very low temperature of T* = 0.1 there are still quite a few monomers 
and dimers in the system. There is a much wider distribution of cluster sizes than at 
the higher temperature. In the model IIA systems, the effective lack of diffusion for the 
large clusters greater than several monomers in length results in a structurally arrested 
state, which has similarities with a gel or glassy phase in experimental systems. 

In contrast, the behaviour of the IIB systems is quite different. We see a greater 
degree of clustering, even at high temperatures. The clusters can diffuse and are 
thereby more effective at growing to longer lengths. (As discussed above, this is 
probably a little unrealistic, as large clusters in real ER or MR fluids would be in a 
dynamic state of growth and decay at T* = 10.) However as the temperature de- 
creases, the model becomes more realistic and we start to see many large clusters in 
the cell. They do not show any inclination to form ‘thick’ clusters as is observed in 
the later stages of aggregation in real ER or MR systems13. This effect is however 
likely to be influenced by quite subtle lateral (i.e., x-direction) long range interac- 
tions and local restructuring which are not accounted for in this simple interaction 
model in which the local structure is highly idealised. 

We also calculated properties averaged over many instantaneous ‘snapshot’ struc- 
tures from the simulation. In Figure 4 we show the average energy per particle, (e),  
for the isotropic potential model I and using the A dynamics rule. 

where e ( k , i )  is the interaction energy of the ith lattice site at the kth state, M is the 
number of MC moves and N is the number of particles in the box. The figure shows 
that the energy monotonically decreases from zero at zero volume fraction to - 4 at 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
4
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



LATTICE MODELS OF ALIGNED DIPOLES 

IIA I IB 

T*= 10 T* = 10 

T*= 1 T*= 1 

1 I5 

T* = 0.1 T* = 0.1 

Figure3 Snapshot configurations f o r  20 x 20 lattices of models I I A  and IIB at a selection of reduced 
temperatures. 
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0.0 V 1.0 
_i 

.a 1 
0.0 0 

-0.6 

1 

A -'.' 
Q) -2 

-2.5 

-3 

-3.5 

-4 

-4.0 -4.5 

Figure4 Average energy per particle ( e )  as a function of volume fraction and temperature for the 
symmetric model IA. 

u = 1.0 for a fully occupied lattice, as expected based on random occupancy of the 
lattice sites. The curves are relatively insensitive to temperature over the wide range 
0.1 < T* < 10.0, which we attribute to an underestimation of the level of cluster 
growth of this model at  low temperature. 

In contrast, for model IIA (Fig. 5) we observe a much greater sensitivity to 
temperature, especially at intermediate volume fractions. In particular, at lower 
temperature, the energy drops more steeply in the 0.1 - 0.2 volume fraction range. 

0.0 
V 

1.0 
0.0 0 I 

0.1 0.2 0.3 0.4 0.5  0.6 0.1 0.8 0.8 1 

A 

V 
9) 

-5.0 

T' -0.1 I 

Figure 5 As for Figure 4, except model IIA is considered 
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LATTICE MODELS OF ALIGNED DIPOLES 117 

The lower temperature systems have a more negative interaction energy. This we 
attribute to the enhanced degree of clustering that occurs by virtue of attraction 
between the dipoles along the field direction and the ability of the system to form 
large clusters by merging. We note that most commercial ER and MR fluids operate 
in the 20-30% volume fraction range. Interestingly, there is a cross-over of all of 
these curves at  a volume fraction - 2/3, which could have some underlying statisti- 
cal significance. There is also a great temperature sensitivity at very high volume 
fraction - 90%,but with the reverse order to that seen at lower volume fractions. At 
low temperature the energy per particle is rather flat above a volume fraction of 0.2. 
A t  higher temperature the energy per particle reaches a maximum of -4.5 at 
v = 0.9, which is geometrically possible if neighbouring sites in the x-direction are 
absent. It would be appear to be easier to achieve this state at higher temperature, 
which could indicate that a highly cooperative organisation of the system is required 
to form this state, which is only possible at high temperature. 

In Figure 6 we show the corresponding IIB simulation phase diagram. This is 
quite different to that of both IA and IIA, which we attribute to the fact that the 
clusters are mobile and can coalesce to form linear chains. Each particle will have 
- 4 energy units, and for long clusters end-effects contribute a negligible amount to 
the average. (Thin) chain formation is essentially complete at u = 0.1 for this system. 
The energy at volume fractions in excess of 0.1 is basically constant, although it 
becomes slightly more positive initially for v > 0.1. This is because at volume frac- 
tions in excess of u = 0.1 there are large clusters that are unable to percolate as they 
are separated from each other by existing percolating clusters, and therefore are 
isolated, unable to achieve the critical length required to percolate. This causes there 
to be a small shift to more positive energies above v = O . 1 ,  because the end effects 
bring down the average energy per particle. This effect is an artefact of a two 
dimensional model, as in 3D the clusters would be able to grow by bypassing the 
existing percolating clusters. 

2, 
0.0 1 .o 
--+- --t---+---t--+--c--i 

0.0 -o:[O.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 

Figure 6 As for Figure 5 ,  except model I I  B systems are considered. 
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1 I8 0. MAAS AND D. M. HEYES 

We have established that the mobility of the clusters, and the anisotropy of the 
potential field has a pronounced effect on the structures that form and their asso- 
ciated thermodynamic characteristics. Although these are non-equilibrium systems, 
because the dipoles are all aligned in the same direction, they can still achieve a 
steady state and it  is justifiable to define an equation of state in this situation. 

Cluster growth is conveniently described within the framework of percolation 
theory. The formation of ‘infinitely’ spanning or percolating chains across the system 
could be a defining feature of practical ER devices. If the clusters span the elec- 
trodes, the viscosity of the liquid will increase dramatically. We have computed the 
percolation characteristics of these model dipolar systems. A cluster is defined as one 
in which the monomers are joined together in a line along the y direction. (Side- 
branches in the x direction are not counted as being significant.) Percolating clusters 
are those clusters that cross the whole simulation cell in the y direction. In 
Figure 7(a) we show the fraction of generated configurations that percolate for a 

% 0.4 
0.2 

;.’ 

I---- I 

I 0.8, ’ - 1  u .  

w 0.2 
0 - *-*--- 1 

0.5 
% 

0 
1 I 

Figure 7 The fraction of MC generated configurations that have at least one percolating cluster as a 
function of volume fraction and at a temperature T* = 10 for a IIA lattice. Key: (a) a 10 x 10 lattice and 
(b) a 20 x 20 lattice. 
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10 x 10 IIA lattice (i.e., anisotropic potential and all-monomer diffusion) at a reduc- 
ed temperature of 10. Figure 7(b) presents the corresponding figure for a 20 x 20 
lattice. The value of the percolation threshold is usually best estimated as the 
volume fraction at which 0.5 of the generated configurations have at least one 
percolating cluster. (In these 'directional' materials, there can be many percolating 
clusters.) The percolation threshold is relatively insensitive to the size of the cell, but 
the transition region in volume fraction over which the probability of percolating 
goes from zero to one becomes narrower as the size increases. This is consistent with 
the results of lattice and off-lattice equilibrium percolation s t ~ d i e s ' ~ ~ ' ~ .  The perco- 
lation threshold decreases as the temperature decreases (or equivalently the field 
increases). This is illustrated in Figure 8, in which we plot the percolation threshold 
for a 10 x 10 IIA lattice as a function of 1/T*. For intermediate inverse temperatures 
(0.5 < T*-' < 1.6) the percolation threshold is approximately linear with T*-l with 
a slope of -0.32, The percolation threshold is therefore proportional to E 2  over a 
limited field range. In contrast, the percolation thresholds for the I IB system are 
very different and much sharper than for the IIA systems. In contrast to the IIA 
case, in IIB the percolation threshold depends on the size of the simulation cell and 
is only weakly dependent on the temperature. This is because the clusters will 
eventually merge together to form the lowest energy state, as i t  is an irreversible 
process. For example, 10 particlcs on a 10 x 10 lattice will eventually form a perco- 
lating cluster. The percolation threshold is therefore a step function in volume 
fraction at u = 0.1. As the clusters, once formed, cannot break up, there is no tem- 
perature dependence for the percolation threshold for the IIB lattice. 

The number of clusters of size s, ( N ( s ) )  

I 

'1 0.1 

v - - -  

0 0 2  0 4  0 6  0 8  1 1 2  1 4  1 6  1 8  2 

1/T* 

Figure 8 The temperature dependcnce of the percolation threshold5 for ii 10 x 10 I I A  lattice 
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was calculated after an equilibration period of 500 MC steps and was then averaged 
over a further sequence of 500 MC steps. In Figure 9 we show ( N ( s ) )  for a 10 x 10 
lattice, at two state points. This function decays approximately as s - ~  where z - 1.5, 
which is somewhat lower than the universal value for equilibrium percolation (2.05 
in 2D ”). 

Having established some steady state aspects of these systems, we now consider 
the mechanism of growth and associated kinetics. The mean cluster size was cal- 
culated using, 

( s ( t ) )  = C s 2 N ( s , t ) ,  
S 

as used by Miyazima et d l 6 ,  This choice of a weighted average gives more import- 
ance to the larger clusters. In Figure 10 we show ( s ( t ) )  for a low temperature IIA 
state at the percolation threshold with T* = 0.25 and u = 0.25. The time develop- 
ment of the mean cluster size shows three almost linear regions. There is a rapid 
increase in cluster size, followed by another region of smaller slope, and then a 
plateau of zero slope. As temperature increases the same regimes exist, however they 
are shifted to larger numbers of MC moves. The slopes are also lower at high 
temperature, indicating a more gradual growth. Examination of the particle dynami- 
cs reveals that the first region of rapid cluster growth is dominated by the diffusion 
and aggregation of isolated monomers to the ends of existing clusters. The second 
region of much slower growth is also caused by monomer migration, but as the 
monomers have further to diffuse on average by this time, the growth rate is slower. 
In the flat region, all the monomers have been exhausted and cluster growth essen- 
tially ceases. At higher temperature, there is more fluctuation of the data points 
(Fig. lO(b)) about the same overall trend, as particles are in a state of dynamic 

I I 

I I d s )  ~ 

I - - -  _ _ _  ~ --- ~ ~ - 1  

Figure 9 The cluster number distribution function for a 10 x 10 IIA lattice at two temperatures T* = 5 
(squares) and T* = 1 (circles) at a volume fraction of 0.735 and 0.55, respectively. 
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121 

V 

0 1  i , , ---+- 
0 10 20 30 40 50 60 70 80 90 100 

M C  moves 

A 

m 
V 

h 
-c1 v 

50 

o l e - - - - - - -  
0 10 20 30 40 50 60 70 80 90 100 

Figure 10 Mean cluster size as a function of number of MC moves for system states given on the figure. 
Key: 10 x 10 I1A lattice at (a) T* = 0.25 and I '  = 0.25 and (b) T* = 0.55 and 1' = 0.295. Both are at their 
percolation thresholds. 

equilibrium in which particle detachment from the ends of the clusters is more fre- 
quent. Nevertheless, eventually ( s ( t ) )  shows some evidence of becoming statistically 
independent of time. 
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In Figure 11 we show ( s ( t ) )  for a low temperature IIB state at T* = 0.25 and 
u=O.25 (the same as Fig. lO(a)). This is not the percolation threshold for the B 
diffusion mechanism, as discussed above. Nevertheless, there are also three distinct 
regimes in time, as for the IIA case. The first region is basically the same process as 
for IIA, i.e., caused by the diffusion and clustering of monomers. The first region 
takes fewer MC moves to complete as the temperature decreases. 

The second region is, however, quite different in origin, and is caused by the 
diffusion and merging of the small clusters. There are almost no monomers left in 
this second region of growth (see Fig. 12). The third ‘region’ reflects the slowing 
down of the growth of the clusters as the mean size increases and their diffusion rate 
diminishes. We note that the mean size is larger in the IIB case than for IIA at the 
same number of moves. This is because at a particular temperature in the IIA case 
there are still some small clusters when the growth process has essentially come to a 
halt, whereas in IIB cluster, cluster aggregation gives rise to additional growth. 

The mechanism of cluster growth involves a random-walk and a merging of 
clusters when the two ends come together (side-to-side amalgomation is rare). This 
behaviour follows closely what is observed experimentally, recently demonstrated by 
performing visualisation experiments on paramagnetic colloidal particles6. Both 
models A and B show a decrease in growth rate with time, which can be convenient- 
ly represented by a growth law of the form, ( s ( t ) )  - t Z  where z < 1, a relationship 
that is also observed experimentally. Figure 13 demonstrates that the simulation 
systems IIA also grow according to this power law. The value of z decreases with 
increasing volume fraction, in agreement with the experiments6. 

These experiments have also revealed some evidence that the growth of ( s ( t ) )  can 
be collapsed onto a single curve with a dimensionless time, t / t ,  where a characteris- 
tic time t ,  CI T*/u. Although this law was found to break down at high volume 

400 , 
350 

300 

A 250 

v 150 

100 

50 I 
0 I- 

0 10 20 30 40 50 

M C  moves 

Figure 11 
used. 

The same volume fraction and temperature as for Figure 10 (a) except that the I IB  lattice was 
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E -  
Figure 12 
Figure 11. 

Instantaneous configuration of the I l B  lattice caught at the end of the first linear region in 

fractions, suggesting a different growth mechanism. We did not have much success 
with this reduction, which could be because the experimental studies were carried 
out at  much lower volume fractions (i.e., - 0.001) than those considered here. 

The main disadvantage with the Monte Carlo method is that a time scale is not 
clearly defined. The time corresponding to a M C  move depends on the reduced 
temperature. At high temperature i.e., T* >> 1 the anisotropic interaction is of mini- 
mal importance and therefore the evolution of the system is diffusion dominated. If 
we assign a MC move with the diffusion of a particle through a particle diameter, CJ 

i.e., a2 = 2DAt = 2kBTAt/3naq where At is a 'time step' associated with a MC move, 
q is the viscosity of the liquid in the absence of the field. Then we have that 1 MC 
move is equivalent to 3na3q/2k,T. For particles of diameter -0.1 pm, the time step 
is equivalent to - 1 s. The real time scale is strongly dependent on (T. 

However, at  low reduced temperatures, T* << 1, the anisotropic interaction domi- 
nates the time scale and hence the value of At. The time for a particle to move 
through CJ assuming Stokes law and classical electrostatics is - 2nq/(E/MVm- 1)2s 
which is independent of o and typically - ms for E -v MVm-'  19. For a typical 
mineral oil the time scale At  here is - 0.1 s. In practical applications the time to 
achieve maximum viscosity is typically seconds which is of the same order of magni- 
tude as we observed in our simulations (i.e., 20-40 M C  moves)2o. Most ER devices 
operate in this very low reduced temperature regime where field induced migration 
of the colloidal particles dominates the motion and particle diffusion by Brownian 
motion is unimportantL9. 
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Figure 13 
The volume fractions u are given on the figure. 

Plot of In(($[))) vs. In (t) for the IIA lattice on a 10 x 10 lattice at a temperature of T* = 0.25. 

4 CONCLUSIONS 

In this report we have proposed a simple lattice model for ER and MR fluids. We 
have concentrated on the growth of the clusters when the field is suddenly turned 
on. We have explored the behaviour of two models, one of which emphasises mono- 
mer diffusion and has very slow diffusion for larger clusters. The other model 
favours irreversible cluster formation. 

Taking account of the results of both models, we have shown that increasing the 
field decreases the volume fraction of particles that is needed to form a percolating 
cluster. In both models, initial cluster growth is determined by the rate of field 
promoted monomer migration and also the particle volume fraction. A subsequent 
slowing down of growth is caused by a depletion in the monomer concentration and 
an increase in the mean intercluster distance. The mean distance a monomer or 
cluster must travel in order to form a larger cluster increases. The rate of growth of 
the mean cluster size decreases with time and follows the same generic power law as 
observed in experiment. This analytic form was followed by both models, and conse- 
quently it is not very sensitive to the growth model chosen. The growth law ( s ( t ) ) z x '  
is therefore not very useful in discriminating between different growth mechanisms. 
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